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 Abstract
Introduction
Lactylation is the covalent modification of histones using lactate as a small molecule precursor, playing
a role in epigenetic regulation. As a novel protein post-translational modification, it has demonstrated
significant relevance in the field of cancer diagnosis and therapy. However, the interaction between
lactylation and tumor cells in breast cancer has not been extensively investigated.

Material and methods
We acquired breast cancer-related data from the GEO and TCGA databases. Lactylation-related
genes were identified from the differentially expressed genes. We utilized COX and LASSO regression
to identify genes with significant prognostic value for constructing a prognostic model and assessing
its predictive performance. This model was integrated with clinical parameters to create a nomogram.
Finally, we conducted immune infiltration analysis, analyzed differences in biological functions, and
assessed drug sensitivity.

Results
We ultimately identified 3 lactylation-related genes significantly associated with prognosis. These
genes were used to construct a prognostic model and calculate a risk score. Using the median score,
patients were divided into high-risk and low-risk groups. Notably, the low-risk group patients exhibited
better prognosis and higher levels of immune infiltration. GO/KEGG enrichment analysis revealed that
PGK1, the gene with the highest HR among these genes, is widely involved in immune, metabolic, and
proliferative signaling pathways. Its high expression also correlates with increased sensitivity to anti-
tumor drugs.

Conclusions
We showcased the potential of lactylation-based molecular clustering and prognostic profiling for
predicting survival, immune status, and treatment response in breast cancer patients. Additionally, we
envision the utilization of PGK1 as a diagnostic marker and therapeutic target in the cancer.Prep
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1 Introduction 2 

In the gradual progression from normal cells to cancer, these cells acquire certain acquired functions, 3 

including sustaining proliferative signaling, resisting cell death, evading growth suppressors, 4 

enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, 5 

ultimately leading to tumor formation and deterioration [1]. In recent years, as our understanding of 6 

cancer has deepened, additional characteristics of tumors have emerged, such as deregulating cellular 7 

energetics, avoiding immune destruction, genome instability and mutation, and tumor-promoting 8 

inflammation [2]. Among malignant tumors, breast cancer is the most common in women globally, 9 

accounting for 31% of all newly diagnosed cancers. It is a type of malignancy that develops through 10 

a multivariate-mediated process involving multiple steps and stages. Importantly, mutations in the 11 

BRCA1 and BRCA2 genes not only increase the hereditary nature of breast cancer but also 12 

contribute to the complexity of this disease. While early breast cancer screening and treatment 13 

advancements have led to reduced mortality rates [3], the rising incidence of breast cancer emphasizes 14 

the urgency for targeted interventions. Our study delves into understanding lactylation in breast 15 

cancer, aiming to inform tailored treatment strategies and improve patient outcomes. 16 

The deregulation of cellular energetics in cancerous diseases is evident in the downregulation of 17 

cell proliferation control and the adaptation of energy metabolism. Under aerobic conditions, normal 18 

cells undergo aerobic oxidation of glucose. However, in hypoxic conditions, cells further reduce the 19 

pyruvate generated from glycolysis into lactate within the cytoplasm. The Warburg effect indicates 20 

that even when oxygen is abundant, cancer cells restructure their energy metabolism by constraining 21 

the glucose metabolism process to glycolysis, leading to the production of significant amounts of 22 

lactate [4]. Glycolysis-driven energy supply is associated with cancer genes like RAS and MYC, as 23 

well as tumor suppressor genes like TP53. Alterations in these genes within cancer cells grant them 24 

abilities such as enhanced cell proliferation, resistance to cell death, and evasion of apoptosis, 25 

ultimately promoting tumor development [5,6]. Lactate, a metabolic byproduct generated from glucose 26 

through glycolysis catalyzed by lactate dehydrogenase (LDH), plays crucial biological roles as an 27 

energy source, an immune regulatory molecule, and a participant in gluconeogenesis. LDH exists in 28 

two distinct subtypes, LDHA and LDHB, each with specific functions [7]. LDHA is responsible for 29 
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converting pyruvate into lactate, and its expression is regulated by proteins like hypoxia inducible 30 

factor-1α (HIF1α), c-Myc, and p53[8]. In contrast, LDHB converts lactate back into pyruvate to 31 

promote oxidative metabolism, and its loss or downregulation is closely associated with the 32 

development and poorer prognosis of cancers like pancreatic and liver cancer [9,10]. Additionally, 33 

lactate produced by cancer cells can be secreted into the extracellular environment, serving as a 34 

signaling molecule to further promote cancer development [7]. It can stimulate endothelial cells to 35 

secrete VEGF protein and activate the NF-κB/IL-8 (CXCL8) pathway, thereby facilitating tumor-36 

related angiogenesis [11,12]. Lactate also plays a vital role in maintaining an acidic environment, 37 

regulating the tumor microenvironment (TME) through processes like cell invasion, metastasis, and 38 

immune escape, thereby sustaining tumor growth [13]. As a result, lactate has become a potent 39 

molecule influencing the behavior of every cell within the TME. 40 

In 2019, Zhang and colleagues introduced a groundbreaking concept called 'lactylation' – a 41 

novel post-translational modification. It involves using lactate, a product of cellular metabolism, as a 42 

small-molecule precursor to induce lactylation of histone lysine, thereby regulating gene expression. 43 

This opened up a new frontier in the study of protein lactylation. They employed mass spectrometric 44 

analysis to detect a molecular weight shift of 72.021 Daltons on histone lysine residues in the breast 45 

cancer MCF-7 cell line. Through isotopic labeling methods and various in vitro and in vivo 46 

experiments, they convincingly demonstrated the widespread presence of lysine lactylation. 47 

Furthermore, they found that the abundance of lactylation in MCF-7 cells is positively correlated 48 

with lactate concentration, and it is regulated by glycolysis and hypoxia induction [14]. Increasingly, 49 

research has shown the close association of lactylation with inflammatory diseases, tumors, 50 

neurodegenerative diseases, and more [15-17]. While the research on protein lactylation is still in its 51 

early stages, it has opened up new horizons for targeting lactate metabolism, transport, and immune-52 

related anti-cancer strategies. Our study, based on a literature search, revealed limited reports on the 53 

functional role of lactylation in breast cancer. Therefore, our research aims to identify differentially 54 

expressed genes related to lactylation in breast cancer, construct a prognostic model for more 55 

accurate patient prognosis prediction, and explore effective cancer therapies. Our study not only 56 

advances our understanding of the interaction between lactylation and cancer but also has the 57 

potential to uncover promising cancer immunotherapy targets, contributing to the fight against breast 58 

cancer. 59 

2 Methods 60 
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2.1 Data download and processing 61 

We obtained breast cancer RNA expression data, CNV files, and corresponding clinicopathological 62 

information from the TCGA-BRCA project (GDC (cancer.gov)). Clinical parameters and normalized 63 

gene expression data from the GSE162228 (GEO Accession viewer (nih.gov)) breast cancer dataset 64 

available in the GEO database, which consists of samples from Taiwanese breast cancer patients [18]. 65 

To ensure data integrity, samples lacking essential clinicopathological or survival information were 66 

excluded. Lactylation is facilitated by specific enzymes or protein modifiers. Therefore, lactylation-67 

related genes encompass those encoding these enzymes and genes associated with the substrate 68 

proteins involved in lactylation. We included a total of 332 lactylation-related genes for subsequent 69 

analysis [19]. The lactylation-associated gene Protein-Protein Interaction (PPI) network was 70 

constructed using the STRING website (STRING: functional protein association networks (string-71 

db.org)). We calculated the frequency of copy number variations in lactylation-related genes by 72 

analyzing changes in gene copy numbers in breast cancer samples from the TCGA database. 73 

Subsequently, the "RCircos" package in R language was utilized to create a circular gene copy 74 

number map. Finally, COX and co-expression analyses were used to generate the prognostic network 75 

of lactylation-related genes. 76 

2.2 Screening of lactylation prognosis-related genes in breast cancer 77 

First, we began by identifying lactylation-related genes with prognostic value through differential 78 

expression analysis and univariate COX regression analysis within the entire dataset of breast cancer 79 

samples. Subsequently, we narrowed down the list of prognosis-related genes using LASSO 80 

regression. Genes with confirmed prognostic significance were then selected through multivariate 81 

COX regression analysis, and we proceeded to construct prognostic models. To calculate the risk 82 

score for each breast cancer sample, we utilized the accumulation method by multiplying the 83 

coefficient with the gene's expression level. Based on the median value, we categorized the samples 84 

into high-risk and low-risk groups and examined the prognostic differences between these groups. 85 

We employed the Kaplan-Meier method to generate survival curves for breast cancer patients, and 86 

these curves were visualized using the "survminer" package. Furthermore, we conducted an in-depth 87 

analysis of the clinical data and risk scores for all breast cancer patients, calculating survival times 88 

and statuses. This information was used to create a nomogram. Finally, we employed the R package 89 

"timeROC" (V0.4) to generate a receiver operating characteristic (ROC) curve for assessing the 90 

sensitivity and specificity of the risk model. 91 
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2.3 Cluster analysis 92 

We employed the "ConsensusClusterPlus" package to conduct unsupervised clustering of breast 93 

cancer samples, based on the expression levels of lactylation-related genes. The results indicated that 94 

the samples were most effectively categorized into two distinct classes. Subsequently, we created a 95 

heat map to visualize the correlation between the expression patterns of lactylation-related genes in 96 

different clusters and the clinical information of patients. We then quantified the expression of 97 

immune cells in these distinct clusters using the ssGSEA method and presented the results through 98 

box plots. In addition, we obtained the GO/KEGG pathway files from the GSEA website and utilized 99 

the "GSEABase" and "GSVA" packages for pathway enrichment analysis and heat map visualization. 100 

2.4 GO/KEGG analysis 101 

We conducted the Wilcoxon test to identify DEGs in both groups. The risk score was calculated 102 

using the R package "limma," with the criteria of FDR < 0.05 and |log2 FC| ≥ 1. For GO/KEGG 103 

enrichment analysis, we utilized the R packages "clusterProfiler" and "enrichplot." 104 

2.5 The relationship between lactylation-related molecular patterns and the clinical 105 

features and prognosis of breast cancer 106 

To assess the clinical relevance of the clusters generated by consensus clustering, we examined their 107 

associations with molecular patterns, clinical characteristics, and survival outcomes. Clinical 108 

characteristics encompassed age, gender, tumor staging, and lymph node staging. Furthermore, 109 

Kaplan-Meier analyses were conducted using the "survival" and "survminer" packages to evaluate 110 

differences in overall survival (OS) among the various models [20]. 111 

2.6 Establishment of a predictive nomogram 112 

The nomogram is created to offer meaningful clinical predictions for breast cancer patients, 113 

encompassing their risk scores and other clinicopathological characteristics, with a particular focus 114 

on the 1-year, 3-year, and 5-year OS rates. We assessed the clinical validity of the established 115 

nomogram through calibration curve analysis and decision curve analysis (DCA). 116 

2.7 Lactylation-related molecular patterns and TME in breast cancer 117 

The ESTIMATE algorithm evaluated the StromalScore and ImmuneScore of breast cancer patients, 118 

and the CIBERSORT algorithm was employed to calculate the levels of 23 immune cell subtypes for 119 

each patient [21,22]. The infiltrating fraction of immune cells was determined using the single sample 120 

gene set enrichment analysis (ssGSEA) algorithm [23]. 121 
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2.8 Drug sensitivity prediction 122 

The half maximal inhibitory concentration (IC50) values for common anti-tumor drugs were 123 

computed using the "oncoPredict" R package to predict drug responses in breast cancer patients with 124 

varying levels of PGK1 expression. 125 

2.9 Cell culture and transfection 126 

The human breast cancer cell line HS578T, provided by the Medical Laboratory of Yan'an 127 

University, was utilized in this study. Cells were cultured in DMEM medium (BI, Israel) 128 

supplemented with 10% fetal bovine serum (FBS) (BI, Israel) at 37°C in a constant temperature 129 

incubator with 5% carbon dioxide. The siRNA sequence used in this research was PGK1 5'-130 

GAGTCAATCTGCCACAGAA-3' (GenePharma, China)[24]. Previously synthesized siRNA targeting 131 

the PGK1 gene was transfected into cells using Lipo 2000 (Invitrogen, USA). 132 

2.10 RNA isolation and quantitative real-time pcr analysis 133 

This study utilized Quantitative RT-PCR to assess the knockdown efficacy of siRNA. Total cellular 134 

RNA was extracted using TRIzol reagent (Thermo Fisher Scientific, USA), and RNA concentration 135 

was checked. Reverse transcription was performed using Hifair® III 1st Strand cDNA Synthesis 136 

SuperMix for qPCR (gDNA digester plus) from Yeasen Biotechnology, China. qPCR was conducted 137 

using Hieff® qPCR SYBR Green Master Mix (No Rox) from Yeasen Biotechnology, China, with 138 

GAPDH as the reference gene. The primer sequences used in this experiment were as follows: PGK1 139 

(forward, 5'-TCACTCGGGCTAAGCAGATT-3'; reverse, 5'-CAGTGCTCACATGGCTGACT-3'). 140 

Amplification reactions were carried out using a qPCR instrument with the following conditions: 141 

95°C for 5 min; 95°C for 10 s; 60°C for 30 s. After 40 cycles of amplification, data analysis was 142 

conducted, ensuring correct amplification and melting curves. 143 

2.11 CCK8 assay 144 

In this study, cell viability of HS578T cells was assessed using the Cell Counting Kit-8 (CCK-8) 145 

method (IC-1519, InCellGene, Tx. USA). Cells were seeded at a density of 1500 cells per well in a 146 

96-well cell culture plate and then transfected with siRNA. After transfection, cells were placed back 147 

in the incubator, and 10 μL of CCK-8 reagent was added at the same time every day for detection at 148 

0h, 24h, 48h, and 72h. Finally, their absorbance at a wavelength of 450nm was measured using a 149 

microplate reader (Molecular Devices, USA). 150 

2.12 Scratch wound healing assay 151 
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HS578T cells, cultured in a 6-well plate, were transfected with both PGK1 siRNA and NC siRNA at 152 

a 70% confluence rate. A sterile 100 μL pipette tip was used to create cell scratches, and images were 153 

captured at 0, 12, 24, and 36 hours post-scratch to ensure consistent scratch area. Image acquisition 154 

was performed using a Nikon Ti-S fluorescent microscope. 155 

2.13 Statistical analysis 156 

All statistical analyses were conducted using R software (version 4.3.1). The t-test was employed to 157 

assess differences between the two groups, while the log-rank test was utilized to examine disparities 158 

between the Kaplan-Meier curves. Univariate and multivariate COX regression analyses were 159 

performed to identify risk factors associated with breast cancer prognosis. A significance level of P < 160 

0.05 was considered indicative of statistical significance. 161 

3 Results  162 

3.1 Lactylation-related genes expression and mutation in breast cancer 163 

We began by identifying lactylation-related genes within the DEGs of the TCGA-BRCA dataset 164 

(Figure 1A). Subsequently, we obtained a total of 83 DEGs for further analysis, and their relative 165 

expressions are depicted in Figure 1B. Using the STRING website, we conducted a PPI network 166 

analysis to elucidate interactions among these DEGs (Figure 1C). Further, we assessed the 167 

frequencies of CNV for ten prognosis-related genes through CNV files (Figure 1D). The results 168 

hinted at CNV potentially playing a regulatory role in the expression of lactylation prognosis-related 169 

genes. In Figure 1E, you can observe the CNV-altered sites on the chromosomes of lactylation 170 

prognosis-related genes. 171 

3.2 Lactylation subgroups and their characterization in breast cancer 172 

We combined the TCGA-BRCA and GSE162228 datasets to enhance the sample size and then 173 

identified ten prognosis-related genes among the 83 DEGs using univariate COX regression analysis 174 

and Kaplan-Meier analysis (CACYBP, G6PD, HSPE1, PGK1, PRDX1, PSMA7, PTMA, 175 

RACGAP1, RAN, and WAS). Subsequently, we illustrated the interactions, regulatory relationships, 176 

and their significance for survival in breast cancer patients using a network diagram (Figure 2A). A 177 

forest plot visually displayed the HR values of the lactylation prognosis-related genes, classifying 178 

them as high or low risk (Figure 2B). To gain insights into the connection between lactylation and 179 

breast carcinogenesis and to determine how lactylation-related genes correlate with breast cancer 180 

expression patterns, we conducted a consensus clustering analysis of breast cancer patients based on 181 
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the expression levels of DEGs. The results indicated that the optimal clustering variable was 2 182 

(Figure 2C), and the breast cancer patients in the cohort were well-distributed into these two groups. 183 

Principal components analysis (PCA) further affirmed the clear separation between the groups 184 

(Figure 2D). Additionally, when comparing the OS of patients in the two groups, we observed that 185 

cluster B had a worse prognosis than cluster A (Figure 2E). Furthermore, we investigated the 186 

relationship between gene expression and clinicopathologic variables in different clusters, revealing 187 

significant differences between the two groups (Figure 2F). We then identified differential pathways 188 

between cluster A and cluster B through GSVA analysis. These pathways included "CITRATE-189 

CYCLE-TCA-CYCLE," "MAPK-SIGNALING-PATHWAY," "CELL-CYCLE," "PURINE-190 

METABOLISM," "CYSTEINE-AND-METHIONINE-METABOLISM," and "PYRIMIDINE-191 

METABOLISM" (Figure 2G). Lastly, we analyzed variations in immune cell infiltration levels 192 

between different clusters using the ssGSEA algorithm. The results showed that cluster B exhibited 193 

relatively higher infiltration of activated CD4 T cells and type 2 T helper cells (Th2). Conversely, 194 

cluster A displayed more significant immune cell infiltration, including B cells, natural killer cells, 195 

eosinophils, macrophages, mast cells, monocytes, neutrophils, and other cell types (Figure 2H). 196 

Consequently, cluster A, characterized by higher immune infiltration levels, displayed a more 197 

favorable prognosis compared to cluster B. 198 

3.3 Construction and evaluation of prognostic models 199 

We initially identified genes associated with patient prognosis through univariate COX regression 200 

analysis, followed by LASSO regression analysis. The LASSO analysis revealed that, based on the 201 

optimal λ-value, gene selection stabilized and minimized partial likelihood bias when including three 202 

genes (Figure 3A-B). Consequently, we identified three lactylation-related genes significantly 203 

associated with prognosis: Risk score = (0.6409 × PGK1) - (0.3610 × PTMA) - (0.2484 × WAS). 204 

Subsequently, we divided the patients into high-risk and low-risk groups using the median risk score. 205 

Kaplan-Meier survival curves illustrated that patients in the high-risk group had significantly worse 206 

prognosis compared to those in the low-risk group (Figure 3C). Furthermore, we evaluated the 207 

predictive performance of this model using ROC curves. The results demonstrated high predictive 208 

accuracy with an AUC of 0.721, 0.644, and 0.630 at 1, 3, and 5 years, respectively (Figure 3D). 209 

Additionally, the heat map displayed the expression of the selected prognostically relevant genes 210 

(Figure 3E). The findings suggested that WAS and PTMA might act as protective factors for breast 211 

cancer, while PGK1 could be a risk factor. Notably, we constructed a Sankey diagram to visualize the 212 

relationship between different clusters, risk scores, and patients' survival status. These diagrams 213 
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revealed that the majority of cluster A corresponded to the low-risk group with a relatively favorable 214 

prognosis, while most of cluster B corresponded to the high-risk group with a less favorable 215 

prognosis (Fig. 3F). In line with the aforementioned results, Figure 3G indicated that the risk score of 216 

cluster B was higher than that of cluster A. Given the strong correlation between the risk score and 217 

patient prognosis, we incorporated clinical parameters to construct a nomogram. This nomogram 218 

assessed the OS of breast cancer patients at 1, 3, and 5 years (Figure 3H). The calibration curve of the 219 

nomogram demonstrated high accuracy between actual observed and predicted values (Figure 3I). 220 

Furthermore, the DCA curves showed that the nomogram's prediction of patients' OS at 1, 3, and 5 221 

years outperformed individual clinicopathologic variables (Figure 3J-L). Therefore, our modeled 222 

genes exhibited strong predictive efficacy, whether grouped by the risk score derived from COX 223 

analysis or unsupervised clustering. 224 

3.4 Immune infiltration analysis 225 

As demonstrated in the preceding analysis, there exists a notable disparity in patient prognosis across 226 

different risk groups. To delve deeper into the disease's etiology and provide relevant insights for 227 

breast cancer immunotherapy, we assessed the correlation between the risk score and immune cell 228 

abundance using the CIBERSORT algorithm. The results unveiled variations in the distribution and 229 

relative content of immune cells among different risk groups (Figure 4A). Further scrutiny revealed 230 

that the risk score exhibited a positive correlation with the infiltration of macrophages M0, 231 

macrophages M2, and neutrophils, while displaying a significant negative correlation with the 232 

infiltration of naive B cells, activated CD8 T cells, and resting dendritic cells (Figure 4B-G). 233 

Subsequently, we conducted a specific analysis of the disparities in immune infiltration levels 234 

between distinct risk groups utilizing the ESTIMATE algorithm, which underscored that the low-risk 235 

group exhibited higher immune infiltration levels (Figure 4H). Next, we explored the relationship 236 

between genes significantly associated with lactylation prognosis and immune cell enrichment. The 237 

findings revealed a robust correlation between the two (Figure 4I). Furthermore, we evaluated the 238 

association between the risk score and stromal cells as well as immune cells within the TME using 239 

the ESTIMATE algorithm. The results indicated that the risk score exhibited a negative correlation 240 

with StromalScore, ImmuneScore, and ESTIMATEScore, implying that the low-risk group had a 241 

higher infiltration of non-tumor cells within the TME (Figure 4J). 242 

3.5 Prognostic analysis, biological function, and drug sensitivity analysis of PGK1 243 
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PGK1 exhibited the highest HR value in both COX and LASSO regression analyses. It was also 244 

identified as one of the genes significantly associated with lactylation prognosis. Consequently, we 245 

conducted a survival analysis for PGK1. Kaplan-Meier survival curves clearly indicated that 246 

variations in PGK1 expression significantly influenced the survival outcomes of breast cancer 247 

patients (P < 0.001), with patients exhibiting low PGK1 expression demonstrating a more favorable 248 

prognosis (Figure 5A). In the GSE124647 dataset, we also observed a significant difference in OS 249 

and progression free survival (PFS) rates between patients with high PGK1 expression and those with 250 

low expression (Figure 5B-C). Subsequently, we delved into the distinct signaling pathways between 251 

the high PGK1 group and the low PGK1 group through GO/KEGG enrichment analysis. Notably, we 252 

identified differentially enriched pathways such as "cell cycle," "PPAR signaling pathway," "IL-17 253 

signaling pathway," "tyrosine metabolism," "phenylalanine metabolism," and "ECM-receptor 254 

interaction" (Figure 5D-E). Previous research has elucidated that peroxisome proliferator activated 255 

receptor (PPAR), aside from regulating energy metabolism, plays a pivotal role in immune cell 256 

differentiation and fate determination [25]; interleukin 17 (IL-17) serves as a key player in immune 257 

system regulation and is a significant pro-inflammatory factor [26]; and the extracellular matrix can 258 

impact immune function by suppressing anti-tumor immune responses [27,28]. Hence, the signaling 259 

pathways we identified are extensively implicated in immunoregulation, energy metabolism, and cell 260 

proliferation. Lastly, we computed the IC50 values of breast cancer concerning commonly used anti-261 

tumor drugs using the "oncoPredict" tool and compared them between the two groups. The results 262 

indicated that patients with high PGK1 expression exhibited increased sensitivity to epirubicin, 263 

palbociclib, ribociclib, sorafenib, cytarabine, and gemcitabine (Figure 5F-K). 264 

3.6 Knocking down PGK1 resulted in decreased viability of HS578T cells in vitro 265 

We employed the q RT-PCR method to assess the knockdown efficiency of PGK1 siRNA in HS578T 266 

breast cancer cells. After 24 hours post-transfection, we examined the expression levels of PGK1 267 

mRNA (Figure 6A) and found a significant decrease induced by the siRNA sequences (P<0.01). 268 

Subsequently, CCK8 analysis revealed a notable reduction in cell viability following PGK1 gene 269 

knockdown (Figure 6B). Finally, a scratch assay was conducted to assess the impact of PGK1 270 

knockdown on the migration capability of HS578T cells. The results indicated a significantly slower 271 

scratch closure in the PGK1 knockdown group compared to the siRNA negative control (NC) group 272 

(Figure 6C), suggesting that PGK1 knockdown may be an effective strategy to inhibit breast cancer 273 

cell proliferation and migration. 274 
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4 Discussion 275 

Protein post-translational modification refers to the chemical alterations of proteins after 276 

translation, which can regulate protein activity, localization, folding, and interactions with other 277 

biomolecules. Proteins can undergo various forms of modification, such as acetylation, methylation, 278 

ubiquitination, and, with the advancement of high-sensitivity mass spectrometry, modifications 279 

stemming from cellular metabolites like lactylation are also gradually being discovered. In the human 280 

embryonic kidney HEK293T cell line, over expression of histone acetyltransferase p300 (p300) has 281 

been observed to enhance lysine lactylation levels, while the absence of p300 results in a reduction in 282 

histone lysine lactylation levels in HEK293T and similar cell lines [14]. Similarly, in the lactate-283 

induced mouse macrophage system RAW 264.7, the levels of lactylation can be significantly reduced 284 

by knocking down p300 or CREB-binding protein (CBP) [29]. Additionally, Class I and Class III 285 

histone deacetylases (HDACs) play a role in de-lactylation within cells [30]. 286 

The discovery of lactylation has not only opened up new frontiers in the study of protein post-287 

translational modification but has also proposed potential regulatory mechanisms for the role of 288 

lactate in physiological and pathological processes such as cancer, inflammation, and metabolism. 289 

Lactylation levels exhibit dynamic changes in mouse oocytes and pre-implantation embryos, and in 290 

vitro hypoxic culture reduces lactylation levels, impairing the developmental potential of pre-291 

implantation embryos [31]. Metabolic remodeling induced by GLIS family zinc finger 1 (GLIS1) 292 

involves the generation of abundant lactate and an increase in lactylation levels on pluripotency gene 293 

promoters, enhancing reprogramming efficiency and even reprogramming of aging cells [32]. 294 

Macrophages specific expression of B-cell adapter for phosphoinositide 3-kinase (BCAP) affects the 295 

expression of repair genes by regulating lactylation levels, aiding the body in mitigating 296 

inflammatory responses [33]. Additionally, neuronal excitation in the brain elevates lactate content and 297 

lactylation levels in brain cells [34]. In Alzheimer's disease (AD) patients' brain samples, lactylation 298 

levels rise and enrich at the promoters of glycolysis genes, activating their transcription. This 299 

ultimately forms a "glycolysis/histone lactylation/pyruvate kinase M2 (PKM2)" positive feedback 300 

loop, promoting the development of AD [17]. In ocular melanoma, elevated lactylation levels 301 

upregulate YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2) expression, leading to the 302 

degradation of period circadian regulator 1 (PER1) and TP53 mRNA, ultimately driving tumor 303 

initiation, progression, and unfavorable outcomes [16]. Thus, exploring the role of lactylation in breast 304 

cancer becomes highly intriguing. This not only offers insights into protein post-translational 305 
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modification in breast cancer research but also paves the way for new directions in the treatment of 306 

breast cancer patients. 307 

 In breast cancer, lactylation is closely associated with tumor growth, the immune 308 

microenvironment, and drug response [35]. In this study, we initiated our investigation by delving into 309 

breast cancer data from the GEO and TCGA databases to identify lactylation-related genes. Utilizing 310 

an unsupervised clustering approach, we categorized breast cancer patients into two clusters, namely 311 

cluster A and cluster B. Among them, cluster A displayed a more favorable prognosis and higher 312 

levels of immune infiltration. Further analysis through COX regression and LASSO regression led us 313 

to identify three lactylation-related genes (PTMA, WAS, PGK1) that hold significant prognostic 314 

value. Among these, prothymosin alpha (PTMA) shows progressively upregulated expression in 315 

esophageal squamous cell carcinoma, with significantly higher expression levels between tumors and 316 

adjacent normal tissues as the disease progresses [36]. Circ-0004277 participates in colorectal cancer 317 

cell proliferation by upregulating PTMA expression [37]. Additionally, studies indicate that levels of 318 

PTMA in tumor samples from breast cancer patients are significantly higher than in normal breast 319 

tissue, and these PTMA levels correlate positively with certain indicators of cancer progression [38]. 320 

However, in bladder cancer, PTMA exerts its tumor-suppressive role by upregulating PTEN and 321 

coordinating the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway through 322 

tripartite motif-containing protein 21 (TRIM21) [39]. The WAS gene belongs to the Wiskott-Aldrich 323 

syndrome protein family, and N-WASP exhibits significantly downregulated expression in breast 324 

cancer, correlating with poor prognosis [40]. Similarly, WASP acts as a tumor suppressor in T cell 325 

lymphoma [41], while in prostate cancer, it enhances cancer cell invasion and metastasis [42]. WASP 326 

and its family can also regulate actin polymerization in breast cancer, promoting cell invasion and 327 

migration, thus exhibiting oncogenic functions [43]. PGK1 is an essential enzyme in the glycolysis 328 

pathway and is involved in various biological processes. In hepatocellular carcinoma, PGK1 329 

promotes cancer cell metastasis through pathways like HIF-1α/PGK1 and MYC/PGK1 [44,45]. In colon 330 

cancer, PGK1 fosters cancer metastasis by upregulating the expression of early growth response 1 331 

(EGR1) and cysteine-rich 61 (CYR61) [46]. In papillary thyroid carcinoma, Sirtuin 6 (SIRT6) 332 

enhances tumor invasiveness by increasing PGK1 expression to promote the Warburg effect [47]. 333 

Subsequently, we constructed a prognostic model using these three genes and assessed its efficacy. 334 

Patients were stratified into high-risk and low-risk groups based on the median risk score, revealing 335 

significant differences in patient outcomes between the groups. Furthermore, we analyzed the 336 

differences in immune infiltration levels between different risk groups using the CIBERSORT and 337 
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ESTIMATE algorithms. The results indicated a close correlation between the low-risk group and 338 

immune cell infiltration. Following this, we developed a nomogram by incorporating the risk score 339 

and clinical-pathological parameters. The calibration curve and DCA curve both demonstrated the 340 

high accuracy of this nomogram in predicting survival rates. Given that PGK1 exhibited the highest 341 

HR in the COX regression analysis, we delved deeper into its role. The results revealed that patients 342 

with high PGK1 expression had significantly worse prognosis than those with low PGK1 expression. 343 

Prior research has indicated that high intracellular expression of PGK1 leads to increased tumor cell 344 

proliferation and can enhance the progression and metastasis of breast cancer through the promotion 345 

of HIF-1α-mediated EMT [48,49]. Furthermore, PGK1's involvement in various protein post-346 

translational modifications such as acetylation, phosphorylation, ubiquitination, and succinylation 347 

plays a crucial role in regulating tumor metabolism and growth [50-53]. Consistent with these findings, 348 

our GO/KEGG enrichment analysis identified PGK1's extensive involvement in immune, metabolic, 349 

and proliferative signaling pathways. Furthermore, PGK1 has been associated with chemotherapy 350 

resistance in cancer patients [54]. Finally, our drug sensitivity analysis revealed that patients with high 351 

PGK1 expression exhibited high sensitivity to anti-tumor drugs such as epirubicin and palbociclib. 352 

Other studies have also shown that inhibiting PGK1 can increase gastric cancer cell sensitivity to 5-353 

FU and mitomycin [55], and breast cancer patients with high PGK1 expression had shorter overall 354 

survival when treated with paclitaxel [56]. 355 

Finally, we confirmed through in vitro cell experiments that the knockout of the PGK1 gene in 356 

human breast cancer HS578T cells significantly inhibits both proliferation and migration of breast 357 

cancer cells. This underscores the pivotal role of the PGK1 gene in the development of breast cancer 358 

and its potential as a promising therapeutic target for the future. Additionally, assessing PGK1 359 

expression before chemotherapy could predict patients' sensitivity to chemotherapy drugs, and 360 

reducing PGK1 expression presents a new strategy to overcome drug resistance. However, there is an 361 

urgent need for specific inhibitors targeting PGK1 to target cancer cells and develop therapeutic 362 

drugs, which holds significant importance. Despite some remaining questions about lactylation, the 363 

progress in related research has opened up an entirely new field in protein post-translational 364 

modification. We hope to elucidate the specific roles and regulatory mechanisms of lactylation in 365 

diseases in the near future. 366 
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 526 

Figure.1| Lactylation-related genes expression and mutation in breast cancer (A) 

Difference analysis  of gene expression in breast  cancer . (B) Differential  

expression of lactylation-related genes in breast cancer . (C) PPI network of 

lactylation-related genes.  (D) Frequency of copy number variation of lactylation -

related genes.  (E) Chromosomal distribution circle diagram of lactylation -related 

genes.  

 

Figure.2  | Lactylation subgroups and their characteristic in breast cancer. (A) Network 

diagram of lactylation-related genes.  (B) Forest plot  of lactylation -related genes 

at different risks . (C) Unsupervised clustering  of lactylation-related genes . (D) 

PCA analysis  among different clusters. (E) Prognostic analysis among different 

clusters . (F) Relationship between clinicopathological features and expression 

levels of lactylation-related genes among different clusters . (G) GSVA analysis 

of signaling pathways between different clusters . (H) Immune infiltration levels 

between different clusters .  
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Figure.3 |  Construction and evaluation of prognostic models. (A-B) LASSO regression 

screening of prognostic genes . (C) K-M curves of different risk groups .  (D) ROC 

curves of different risk groups . (E) Expression of modeling genes in different 

risk groups.  (F) Relationships between different clusters and risk scores,  and 

survival status.  (G) Differences in risk scores between different clusters. (H) 

Nomogram for predicting the probabil ity of OS at 1, 3, and 5 years in breast 

cancer patients .  (I) Calibration curve for nomogram. (J-L) DCA curves for 

nomogram. 

Figure.5 |Prognostic analysis, biological function, and drug sensitivity analysis of PGK1. 

(A) Survival curves of PGK1. (B-C) Differences in OS and PFS among patients 

with varying levels of PGK1 expression in the GSE124647 dataset.  (D-E) 

GO/KEGG analysis of biological  functions and signaling pathways of 

differentially expressed genes between the high PGK1 group and low PGK1 

group. (F-K) Comparison of the IC50 values of common antitumor drugs between 

the high PGK1 group and low PGK1 group, including epirubicin, palbociclib, 

ribociclib, sorafenib, cytarabine, gemcitabine. 

Figure.4| Immune infiltration analysis. (A) Distribution and relative content of 

immune cells in different risk groups. (B-G) Correlation between risk scores and 

immune cell types.  (H) Level of immune infiltration in different risk groups . (I) 

Correlation between modeling genes and immune cell abundance. (J) Correlation  

between risk scores and StromalScore, ImmuneScore.  
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 535 

Figure.6| Cell experiment. (A) qRT-PCR assessment of PGK1 mRNA levels after 24 hours 

of transfection. siRNA sequence could lead to a significant decrease in PGK1 mRNA expression 

(P<0.01). (B) CCK8 assay. The viability of the cells was significantly reduced after PGK1 

Knockdown. (C)  Scratch wound healing assay .  A significantly slower scratch closure in 

the PGK1 knockdown group compared to the siRNA NC group. All data are expressed as the 

means ± SD of the three experimental groups. *P <0.05, **P <0.01, ***P <0.001 were 

considered statistically significant. 
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Figure.1| Lactylation-related genes expression and mutation in breast cancer.
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Figure.2 | Lactylation subgroups and their characteristic in breast cancer.
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Figure.3 | Construction and evaluation of prognostic models.
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Figure.4| Immune infiltration analysis.
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Figure.5 |Prognostic analysis, biological function, and drug sensitivity analysis of PGK1.
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